2010年5月12日 於名古屋大学

ITP派遣報告

- 韓国成均館大学 -2009年12月3日~2010年1月31日

> 名古屋大学 豊田研究室 黒田俊之

報告概要

・韓国、成均館大学について

・CAPST、Han教授の研究室について

・ITPを通じて学んだことについて

韓国成均館大学

韓国

- ・人口 約4800万人 (ほぼ半数はソウル都市圏)
- •面積 約10万km²(日本の1/4)
- ・気候 冬は寒冷(-10℃以下)雪はあまり降らない

成均館大学(Sungkyunkwan University)

- ·韓国最古の大学 (建学600年)
- ・サムスンも出資

成均館大学図書館

CAPST: Center for Advanced Plasma Surface Technology

CAPST

- ・プラズマを用いた新機能性薄膜 材料の開発及び評価
- ・プラズマ源の開発、プラズマ診断

Han教授の研究室

特にPECVDやマグネトロンスパッタリングを用いた薄膜形成及び評価 中国やフィンランドからの留学生在籍

研究例

- Micro-crystalline Si film synthesis on glass by dual frequency PECVD
- 2. Hardness of silicon oxide films with controlling to the ion flux by PECVD
- 3. Nano-crystalline Si film synthesis by ICP assisted magnetron sputtering at low temperature

CAPST

Prof. Han研究室のメンバー

研究テーマ

Han教授研究室(薄膜系) Lee教授研究室(エッチング、バイオ応用)

韓国での研究テーマ

二周波新規プラズマ源を用いた微結晶シリコン薄膜堆積

(Youn J. Kim氏)

日本での研究テーマ

シリコン薄膜堆積用SiH』/H。マイクロ波プラズマの気相診断

理由

Youn J. Kim氏が薄膜評価の経験が豊富、様々な知識所有 ⇒共同研究で議論を重ねることで日本での研究にも活かせる

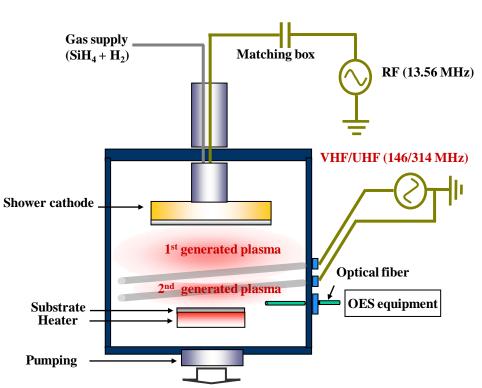
Introduction

microcrystalline silicon (µc-Si:H) thin film

- -. Wide-range spectral sensitivity
- -. Excellent stability against light soaking
- -. Low light absorption coefficient
 - \Rightarrow thick film is required (~2 μ m)

Assignment for practical application

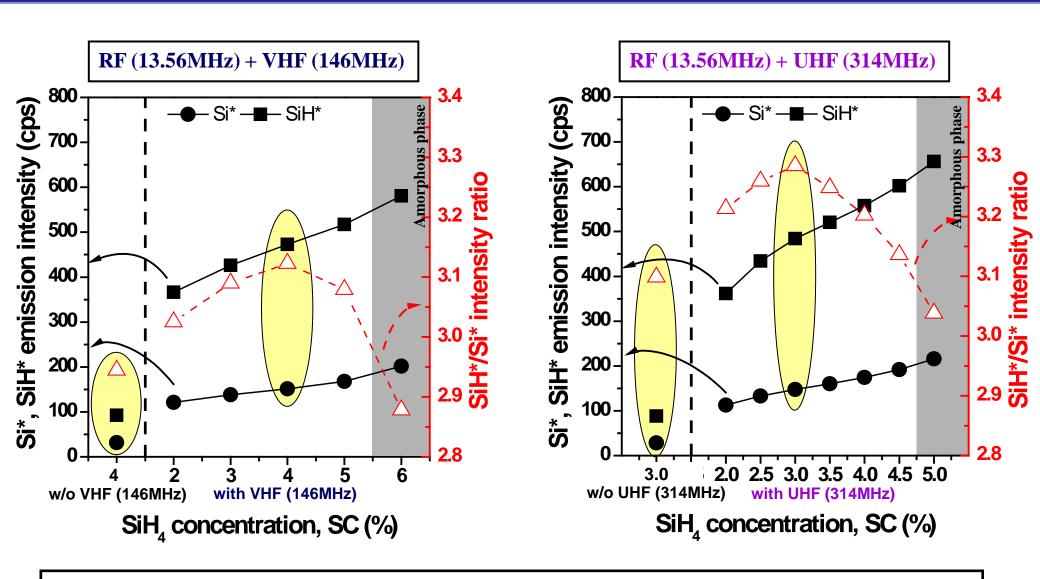
- -. Enlargement of substrate size \Rightarrow Low cost
- -. High quality \Rightarrow Improvement of generation efficiency
- -. High deposition rate \Rightarrow Increase of productivity


Objective

To find getting Guideline for improvement of μc -Si:H thin film quality and high deposition rate

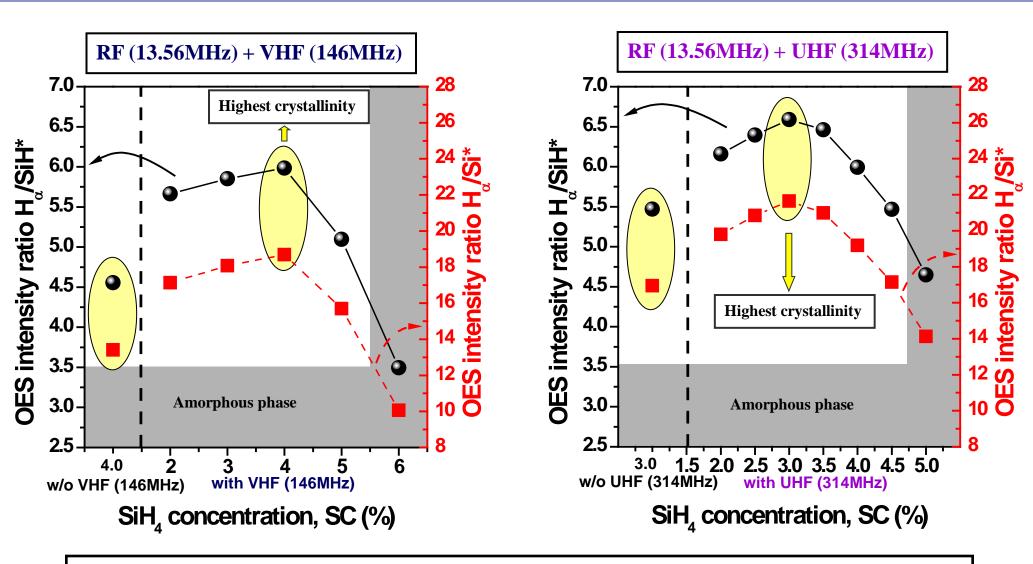
Optical Emission Spectroscopy(OES)

Experimental setup




```
Process parameters
-. Feeding gas
                              SiH<sub>4</sub>, H<sub>2</sub>
                              \sim 5 \times 10^{-3} \text{ Torr}
-. Base pressure
-. Working pressure
                              1.5 Torr
    Silane concentration (SC=100 \timesSiH<sub>4</sub>/(SiH<sub>4</sub>+H<sub>2</sub>): 2.0 ~ 6.0 %
                               350 °C
-. Substrate Temp.
                              180 W (RF: 13.56 MHz),
-. Power
                            60 W (VHF (146 MHz), UHF(314 MHz))
                               Glass
-. Substrate
                              80 mm
-. Distance<sub>T-S</sub>
                              2 μm
-. Film thickness
```

Analysis


-. Plasma diagnostics: Optical Emission Spectroscopy

Optical emission spectra (1)

^{-.} SiH* & Si* peak intensities and SiH* / Si* intensity ratio correspond to the deposition rate and the electron temperature. respectively.

Optical emission spectra (2)

- -. The ratio of H_a to SiH*(Si*) correspond to the crystallinity which was determined by Raman data
- -. The increase in the H_a/SiH*(Si*) ratio in the plasma resulted in enhanced crystallization of the deposition silicon thin films

Summary

OES

- -. SiH* & Si* peak intensities increased by VHF or UHF.
- -. SiH* & Si* peak intensities and SiH* / Si* intensity ratio correspond to the deposition rate and the electron temperature, respectively.
- -. The ratio of H_{α} to SiH*(Si*) correspond to the crystallinity which was determined by Raman data.
- -. The increase in the H_{α} / SiH*(Si*) ratio in the plasma resulted in enhanced crystallization of the deposition silicon thin films.

ITP韓国派遣で学んだこと

•英語力

英語能力の向上

研究について

英語で自分の研究内容を伝えることの難しさ学生間のつながり

-国際意識

韓国の学生は外国で研究したい、働きたいという意志が強い

10年後、20年後の未来の想像

•異文化交流

自国と他国の文化の比較、尊重

謝辞

このような機会を与えてくださった ITP関係者の皆様に心より感謝申し上げます。