

Study of Electronegativity in Inductively Coupled Radio-Frequency Plasma with Langmuir Probe

International Training Program Queen's University Belfast

> Dept. Energy Sciences Tokyo Institute of Technology Hotta Lab D1 Bin Huang (黄 斌)

About Queen's

Director: Prof. Bill Graham

Cooperator: Mr. Mujahid

Main building of Queen's

Introduction to ICP

Oxygen ICP application

Semiconductor manufacture

Ashing:

Oxygen +polymers /organics $\rightarrow CO_2 + H_2O$

Oxygen ICP characteristics

Negative ions: $O^{-}, O_{2}^{-}, O_{3}^{-}, etc$

Two operation regimes:

E-mode: low power, low density, capacitive discharge. H-mode: high power, high density, inductively discharge.

E-H transition:

change of electron density, EEDF, coil current, light emission, etc.

Photo-detachment measuring system

GEC reference cell

Schematic of photo-detachment measurement system

Electrode diameter: 165.1 mm Electrode gap: 40.5 mm

Photo-detachment diagnostics

Diagnostics principle:

Photo-detachment electron current

electron affinities: O⁻:1.46 eV; O₂⁻:0.44 eV Nd:YAG laser(532 nm): hv=2.33 eV

 $A^{-}+hv=A+e$

Suffice to photo-detach both species

Advantages:

- Less perturbing
- Better time resolution
- Capacity of measuring ion temperature

Photodetachment fraction Vs laser energy

Experimental:

Negative ion density:

 $\frac{\Delta I_e}{I_e} = \frac{n_-}{n_e}$

 I_e : probe current n_e : background density ΔI_e : instantaneous current

Theoretical:

Photo-detachment fraction:

 $\frac{\Delta n_{-}}{n_{-}} = 1 - \exp{(-\frac{E}{S}\frac{\sigma_{pd}}{h\nu})}$

E:incident laser power S:beam cross-sectional area σ_{pd} : photo-detachment cross section of negative ion

Deviate from theory:

thermionic electron emission laser ablation of the probe surface

Electronegativity Vs probe bias

Electronegativity (blue), Negative ion current (black) and electron current (red) against probe bias voltage in capacitive mode.

Electronegativity (black), Negative ion current (red) and electron current (green) against probe bias voltage in inductive mode.

Electronegativity against pressure

Capacitive mode

Peak electronegativity when RF power fixed:

O⁻is produced by dissociative attachment of O_2 and destroyed by ion-ion recombination at low pressures. At higher pressures it is lost due to detachment.

Electronegativity decreased when RF power increase: Electron density increases while negativity ion density is almost constant

Electronegativity against pressure Compared with simulation

Figure 3.2. Core electron density n_{e0} versus pressure at 500, 1000 and 2000 W of absorbed power.

Figure 3.4. Average electronegativity $\vec{\alpha}$ versus pressure at 500, 1000 and 2000 W of absorbed power.

Figure 3.3. Average negative ion density \bar{n}_{cr} versus pressure at 500, 1000 and 2000 W of absorbed power.

From Corrmac. Corr Ph.Dthesis

Conclusion & future work

< Conclusion: >

Laser energy, laser diameter and probe bias voltage were calibrated and suitable parameters were selected for photo-detachment measurement.

> Electrongativity were measured at different positions in capacitive mode.

 \succ The relationship between electronegaticity and pressure & RF power is consistent with simulation.

< Future work: >

Measuring electronegativity against pressure in inductively mode

Electronegativity against pressure

Inductive mode 1.25 cm from lower electrode

The relationship is not clear and should do again.

Electronegativity against pressure Compared with simulation

Global model

From Corrmac. Corr thesis

Self introduction

Name: Bin Huang (黄 斌)

Hometown: Suzhou, China (蘇州,中国)

```
Research in Tokyo Tech:
Xe gas jet type Z-pinch EUV source
```

Research in Queen's: Oxygen radio-frequency ICP

Oxygen Inductively Coupled Plasma

Two operation regimes:

E-mode: low power, low density, capacitive discharge. H-mode: high power, high density, inductively discharge.

Negative ions: $O^{-}, O_{2^{-}}, O_{3^{-}}, etc$

O2- is less than 10%

< Application: >

surface modification
fabrication of chips
thin film deposition

E-H transition:

change of electron density, EEDF, coil current, light emission, etc.