
Nagoya university
Hironao Shimoeda
Introduction

The University of Texas at Dallas
International Center for Advanced Materials Processing (ICAMP)

Prof. Matthew John Goeckner
Major: Physics
URL:
https://explorer.utdallas.edu/editprofile.php?pid=2431&onlyview=1#

Prof. Lawrence J. Overzet
Major: Electrical engineering
URL:
https://explorer.utdallas.edu/editprofile.php?onlyview=1&pid=13550
Dealey Plaza in the historic West End district of downtown Dallas, Texas

The assassination site; the mark on the road where John F. Kennedy was hit.

The Texas School Book Depository; at the rooftop of that building, the assassin shot at JFK.
Background

Plasma potential V_p • • • Decision of electron temperature, ion accelerations between bulk plasma and sheaths

Measurement of V_p → **Probe diagnostics**

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicity</td>
<td>Plasma perturbations</td>
</tr>
</tbody>
</table>

Noncontact measurement of V_p → **Measurement of electrode voltage**

Electrode voltage = DC self bias voltage (V_{dc}) + RF voltage (V_{rf})

(V_{dc} • • • Decision of ion energy in the sheaths)
Relation between V_{dc} and V_p

Plasma Equivalent Circuits

(a) DC or low frequency plasma, (b) High frequency plasma, and (c) Simplification of (b) by considering $R_p << R_{S1}, R_{S2}$, and most ions moving to electrodes

Potential diagram of V_p and V_{dc}\[^1\]

\[\frac{V_1}{V_2} = \left(\frac{A_2}{A_1} \right)^a \quad (a \leq 2.5) \quad (1) \]

Substituting $V_1 = V_p$, $V_2 = V_p - V_{dc}$ in the equation (1) and arranging, we obtain

\[V_p = \frac{\left(\frac{A_2}{A_1} \right)^a}{\left(\frac{A_2}{A_1} \right)^a - 1} V_{dc} \quad (2) \]

\[^1\] ttp://timedomaincvd.com/CVD_Fundamentals/plasmas/capacitive_plasma.html
\[^2\] Principles of Plasma Discharges and Materials Processing
Relation between electrode voltage and V_p

Experimental\[^3\]

\[R = \frac{A_2}{A_1} \]

FIG. 3. Approximate target and plasma voltage waveforms in a glow discharge with grounded walls (R is the ratio of target area to wall area).

We can find more accurate V_p by comparing one calculated from V_{dc} with one obtained from electrode voltage waveforms.

\[V_1 = V_p, \quad V_2 = V_p - V_t \]

\[\frac{V_1}{V_2} = \left(\frac{A_2}{A_1} \right)^a \]

(0.98 < a < 1.4 when 0.09 < A_2/A_1 < 0.29.)

Objective

- \(V_{dc}\) measurements
 - Construction of a circuit to measure DC component.
 - Dependence of \(V_{dc}\) as a function of the electrode position.
 - \(V_p\) calculation from outputs

- \(V_{rf}\) measurements
 - Construction of a voltage divider circuit
 - Dependence of \(V_p\) as a function of the electrode position.
Experimental

Liquid injection plasma system

Ar gas flow rate : 20 sccm
RF power: 1 - 20 W Gas pressure : 16 Pa

\(h \) (the electrode position) : 0, 2.5, 5.0 cm

\(A_2/A_1 : 0.017 \ (h = 0 \ \text{cm}), \ 0.015 \ (h = 2.5, 5.0 \ \text{cm}) \)

\(A_1 \) : Area of the grounded chamber
\(A_2 \) : Area of the energized electrode
Dependence of V_{dc} on the electrode position

Circuit diagram to measure DC component

- Increase in $|V_{dc}| \rightarrow$ Increase in discharge voltage
- Decrease slightly in $|V_{dc}|$ with changing h
V_p calculation with V_{dc}

\[
\frac{V_1}{V_2} = \frac{C_{sh2}}{C_{sh1}} = \frac{A_2 s_1}{A_1 s_2}
\]

- C_{sh1}, C_{sh2}: sheath capacitances
- s_1, s_2: sheath thicknesses

In RF plasma, ion sheaths can’t follow the RF voltage.

→ $s_1/s_2 \sim 1$ (also as reported[3])

→ In the equation (2), it is assumed that $a = 1$.

\[
V_p = \frac{A_2}{A_1 A_2 - 1} V_{dc} \quad (2')
\]

Decreases in averaged V_p and $|V_{dc}|$ with changing h

→ Decrease in the electron temperature

Measurement of electrode voltage

Methods of measuring electrode voltage \((V_{rf} + V_{dc})\)

High voltage probe
Voltage divider

RF high voltage have to be divided into measurable voltages.
→ Voltage divider circuit

Equivalent circuit of general electric element for RF voltage

ex. \(R=1\ \text{MΩ}, L=0.1\ \text{μH}, C=0.1\ \text{pF}\)

\(f=10\ \text{Hz}\)
→ \(j\omega L << R, 1/j\omega C >> R \rightarrow Z \sim R\)

\(f=10\ \text{MHz}\)
→ \(j\omega L << R, 1/j\omega C << R \rightarrow Z \sim 1/j\omega C\)

For RF voltage, influences of inductance and capacitance are critical.
Evaluation of V_p by measuring V_{rf}

RF voltage divider circuit

Theoretical

$V_{rf} \approx 1114 \times V_O$

V_{rf}: amplitude of RF discharge voltage
V_O: amplitude of measured RF voltage

Actual measurement

$V_{rf} \approx 71 \times V_O$

Incorrect values on capacitors and inductors.

The behaviors of V_p were obviously incorrect.

Induced voltages or RF noises in MN \rightarrow Inaccurate V_{rf}
Summary

V_p in the RF capacitively coupled plasma was determined by measuring V_{dc} with changing the electrode position.

- Decreases in averaged V_p and $|V_{dc}|$ with changing h
 \[\rightarrow \text{Decrease in the electron temperature} \]

V_p was determined by measuring V_{rf} with changing the electrode position by using a voltage divider circuit.

- Correct V_p was hardly obtained because of induced voltages or RF noises.

Future works

- More accurate measurements of V_{rf} by getting circuit lines as short as possible.
- Identification of frequency dependencies of electric elements.
- Comparisons of electron density, electron temperature, and V_p with other techniques.
Thank you for your kind help and support!