Plasma Potential Determination in RF Capacitively Coupled Plasma by Measuring Electrode Voltage.

Nagoya university Hironao Shimoeda

Introduction

The University of Texas at Dallas International Center for Advanced Materials Processing (ICAMP)

Prof. Matthew John Goeckner

Major: Physics URL: https://explorer.utdallas.edu/editprofile.php?pid=2431&onlyview=1#

Prof. Lawrence J. Overzet

Major: Electrical engineering URL: https://explorer.utdallas.edu/editprofile.php?onlyview=1&pid=13550

Introduction

Dealey Plaza in the historic West End district of downtown Dallas, Texas

The assassination site; the mark on the road where John F. Kennedy was hit.

The Texas School Book Depository; at the rooftop of that building, the assassin shot at JFK.

Background

Plasma potential V_p ••• Decision of electron temperature, Ion accelerations between bulk plasma and sheaths

Measurement of $V_p \rightarrow$ **Probe diagnostics**

Relation between V_{dc} and V_{p}

Plasma Equivalent Circuits

(a)DC or low frequency plasma, (b)High frequency

plasma, and (c) Simplification of (b) by considering

 $R_p << R_{S1}$, R_{S2} , and most ions moving to electrodes

 $V_{1} = V_{p}, V_{2} = V_{p} - V_{dc}$ time-average potential V_{dc} A_{2} V_{dc} electrodesmall electrode electrode electrode electrode electrode electrode electrode electrode electrode

Potential diagram of V_p and $V_{dc}^{[1]}$

$$\frac{V_1}{V_2} = \left(\frac{A_2}{A_1}\right)^a \quad (a \le 2.5)^{[2]} \ (1)$$

Substituting $V_1 = V_p$, $V_2 = V_p - V_{dc}$ in the equation (1) and arranging, we obtain

 $V_{p} = \frac{\left(\frac{2}{A_{1}}\right)}{\left(\frac{A_{2}}{A_{1}}\right)^{a} - 1} V_{dc} \quad (2)$ [1] ttp://timedomaincvd.com/CVD_Fundamentals/plasmas/capacitive_plasma.html [2] Principles of Plasma Discharges and Materials Processing

5/13

Relation between electrode voltage and V_{D}

Experimental^[3]

FIG. 3. Approximate target and plasma voltage waveforms in a glow discharge with grounded walls (R is the ratio of target area to wall area).

We can find more accurate V_p by comparing one calculated from V_{dc} with one obtained from electrode voltage waveforms.

 $(0.98 < a < 1.4 \text{ when } 0.09 < A_2/A_1 < 0.29.)$

[3] J. W. Coburn and K. Eric, J. Appl. Phys. 43 4965 (1972).

≻V_{dc} measurements

- Construction of a circuit to measure DC component.
- -Dependence of V_{dc} as a function of the electrode position.
- $\cdot V_p$ calculation from outputs

►V_{rf} measurements

- Construction of a voltage divider circuit
- Dependence of V_p as a function of the electrode position.

Experimental

Dependence of V_{dc} on the electrode position

- -Increase in $|V_{dc}| \rightarrow$ Increase in discharge voltage
- Decrease slightly in $|V_{dc}|$ with changing *h*

V_p calculation with V_{dc}

$$\frac{V_1}{V_2} = \frac{C_{sh2}}{C_{sh1}} = \frac{A_2 S_1}{A_1 S_2}$$

 C_{sh1} , C_{sh2} : sheath capacitances s_1 , s_2 : sheath thicknesses

In RF plasma, ion sheaths can't follow the RF voltage.

$$\rightarrow$$
 s₁/s₂ ~ 1 (also as reported^[3])

 \rightarrow In the equation (2), it is assumed that a = 1.

$$V_p = \frac{\frac{A_2}{A_1}}{\frac{A_2}{A_1} - 1} V_{dc} \quad (2)^{\frac{1}{2}}$$

Decreases in averaged V_p and $|V_{dc}|$ with changing $h \rightarrow$ Decrease in the electron temperature

[3] J. W. Coburn and K. Eric, J. Appl. Phys. 43 4965 (1972).

Measurement of electrode voltage

<u>Methods of measuring electrode voltage $(V_{rf} + V_{dc})$ </u>

High voltage probe Voltage divider

Equivalent circuit of general electric element for RF voltage

- ex. R=1 MΩ, L=0.1 μ H, C=0.1 pF
- <u>f=10 Hz</u>
- $\rightarrow j\omega L \ll R, 1/j\omega C \gg R \rightarrow Z \sim R$ f=10 MHz
- \rightarrow jwL << R, 1/jwC << R \rightarrow Z~1/jwC

RF high voltage have to be divided into measurable voltages. \rightarrow Voltage divider circuit

Dependence of 5.4 $\ensuremath{\text{M}\Omega}$ resistor on frequency

For RF voltage, influences of inductance and capacitance are critical.

Evaluation of V_p by measuring V_{rf}

RF voltage divider circuit

Theoretical

$$V_{rf} \approx 1114 * V_0$$

 $V_{\rm rf}$: amplitude of RF discharge voltage $V_{\rm O}$: amplitude of measured RF voltage

Actual measurement

 $V_{rf} \approx 71 * V_0$

The behaviors of V_p were obviously incorrect.

Induced voltages or RF noises in MN \rightarrow Inaccurate V_{rf}

Summary

 V_p in the RF capacitively coupled plasma was determined by measuring V_{dc} with changing the electrode position.

- > Decreases in averaged V_p and $|V_{dc}|$ with changing *h*
 - \rightarrow Decrease in the electron temperature

 V_p was determined by measuring V_{rf} with changing the electrode position by using a voltage divider circuit.

> Correct V_p was hardly obtained because of induced voltages or RF noises.

Future works

- •More accurate measurements of V_{rf} by getting circuit lines as short as possible.
- Identification of frequency dependencies of electric elements.
- -Comparisons of electron density, electron temperature, and $V_{\rm p}$ with other techniques.

Thank you for your kind help and support!