International Training Program

アメリカ合衆国 カリフォルニア大学ロサンゼルス校 派遣報告

名古屋大学大学院工学研究科電子情報システム専攻 陳 尚

International Training Program (ITP) 短期派 遣プログラムにて、平成24年6月2日か ら8月10日までの約2ヶ月間、アメリ カ合衆国、カリフォルニア大学ロサンゼ ルス校に派遣され、Jane P Chang 教授の 研究室で研究活動に従事させて頂いたの で、ここに報告する。研究テーマが第一 原理によるプラズマ原子層成長法で成長 された強誘電体の電気特性の計算。

UCLA について

カリフォルニア大学ロサンゼルス校 (英語:University of California, Los Angeles)は、米国カリフォルニア州ロサ ンゼルス市に本部を置くアメリカ合衆国 の州立大学である。1919年に設置された。 カリフォルニア大学校群中バークレー校 に次ぐ歴史を持ち、カリフォルニア州の 大学で学生数が最も多い総合大学。大学 の略称は UCLA。26000人の学部生と11000 の院生が在籍している。アメリカ合衆国 における有数の学術処点であるほか、プ ロスポーツ選手の輩出も多い。写真1が UCLA のキャンパスの中最も古い建物,ラン ドマークの Royce hall である。

図1、UCLA のランドマークである Royce Hall。

Jane P Chang 教授の所属する化学、 生物分子工学研究科は電子マテリアルの 合成とプラズマプロセスの研究が行って いる。マルチファンクションナルの複雑 な酸化膜の電子、化学、磁気、機械また バイオ特性を実験と理論的の手法で調べ ている。特に、最近次世代技術として注 目されたプラズマ原子層成長法の気相化 学及び材料との表面反応を実験と理論的 手法での解析が進んでいる。また、マイ クロエレクトロニクス、オプトエレクト ロニクスと化学センサー等ナノレベルの デバイスの特性を調べる技術に関する研 究も行っている。写真2が Chang 先生の グループの皆さんとキャンパス内にある レストランで食事する様子。

図2、 Chang 先生のグループの皆さんと キャンパス内にあるレストランで食事す る様子。

B. 研究背景

近年、磁気特性と誘電体特性をコ ンバインした材料が極めて注目されてい る。それらの特性を生かし、新しいタイ プの電磁気デバイスが可能になっている。 ここでは、この新しい分野における基礎 を紹介する。

電磁気効果

磁場によって電場による磁化また は偏光の線形電気磁気効果誘導は(i)振 幅、偏波と光波の位相の変調器、(ii)ME データ・ストレージおよびスイッチング回 路、(iii)光ダイオード、(iv)スピン波 発生器、(v)増幅器および(vi)周波数 変換器、[3]などに応用できると議論され ました。また、基礎研究のツールとして ME の効果を使用することが有望な応用と 考えられています。その理由としては、 時間非対称の性質から、ME の効果は、磁 気対称性と相転移の判定で、[4]反強磁性 ドメインとその操作の観察のための中性 子回折の補完的なツールと見なされてい ました。

マルチフェロイックス

単相化合物における ME の結合係 数が低いため、大きな誘電率または磁化 率[3]のコンポーネントによる、強力な内 部電磁界を利用することは ME の応答の顕 著な向上を達成するための手法です。強 磁性体は、巨大透磁率と誘電係数で発見 されています。従って、強磁性強誘電体 は、巨大な ME の効果を持つ有望な材料で あります。

ME の位相制御システムが強磁性特 性であり、二つ以上の元素による構成さ れたマルチフェロイックスは、同位相で 統一されることが期待されています[5]。 巨大 ME の効果および ME の位相制御の特 性を持つマルチフェロイックスにもかか わらず、単相化合物の ME 効果は応用に至 まで、まだたくさんの課題が残っていま す。マルチフェロイックスの ME の特性を チューニングの自由度を増やすための重 要なステップは、マルチフェロイック材 料の薄膜成長です。薄膜成長は、バルク 成長中に発生したグラデーションや欠陥 を避けることができます。化学置換を容 易にし、格子歪み、膜厚および置換基の 増加範囲はデバイス応用[3]のための改良 に適合する ME の特性を制御することから 新しい応用が期待される。

プラズマ促進原子層堆積 (PEALD)

これらのマルチフェロイック薄膜 を合成するためには、PEALD は気相化学プ ロセスの逐次使用に基づいているアイデ アの堆積技術として提案されました。 PEALD 反応は、一般的前駆体と呼ばれる、 プラズマ源と二つ以上の化学物質を使用 しています。これらの前駆体とプラズマ は、シーケンシャルで表面、一回一台ず つと反応する。繰り返し成長表面に前駆 体を暴露ことによって、薄膜を堆積させ る[6]。 PEALD で成長されたフィルムの厚 さの制御は簡単に反応のサイクル数に依 存します。また、PEALD は多様なフィルム 材料、高密度および低不純物レベルの特 徴があります。また、低い堆積温度のメ リットもあります。従って、PEALD は将来 の世代の集積回路を製造するためのマイ クロエレクトロニクスに応用することが できます[7]。

C. 目的

マルチフェロイック物質の強誘電 性のメカニズムの解明に関わるエピタキ シャル歪み、欠陥、微細構造、またはイ ンターフェイスのプロパティの効果は物 質の物性を変えることが多い[8]、[9]で すが、それはへの第一原理計算を使用す ることで本質的な材料の特性を決定し、 矛盾した実験データを説明するができま す。本研究では、BiFe03 は、第一原理研 究のためのプロトタイプの材料として使 用されます。密度関数理論に基づく第一 原理計算は、材料の電子的特性を予想す る効果的な方法です。

Dnesity 汎関数理論 (DFT) の原理

DFT は、計算能力の急速な増加を 主因として、近年、広範囲の材料の原子 レベルでの特性を予測する上で大きな注 目を集まっています。この理論では、多 電子系の特性は [10] 電子密度上の空間的 に依存する汎関数を用いて決定すること ができる。

Cambridge Serial Total Energy Package (CASTEP)

量子力学の計算プログラムについ τ lt , Cambridge Serial Total Energy Package (CASTEP) を用いました。 CASTEP は密度汎関数理論の中で、平面波ポテン シャル全エネルギーの計算を利用してい ます。 CASTEP は、特定の材料の構造の形 状を最適化するために、最適化手法を使 用し、総エネルギー、電子バンド構造、 状態密度を計算するために使用されてい ます。交換相関エネルギーは局所密度近 似(LDA)や一般化勾配近似(GGA)のい ずれかから選択することができます。電 子最小化は、最も使用された密度混合ス キーム[11]など、様々なスキームを用い て行うことができます。 CASTEP 計算の簡 易な作業の流れを図 3 で示されています。

図3 計算作業の流れ。

BiFe03 のバルク電子構造

BiFe03 の基本単位胞を図4で示さ れています。BiFe03 の構造が菱面体対称 とR3C グループであり、リラックスした 構造は格子定数 5.6343Å、rhomobohedral 角度 59.348°[12]を持つ、歪んだペロブ スカイト構造です。構造を最適化した後、 格子パラメータは表 1 にまとめたように 他のグループが報告されした実験結果と 比較して、同一の結果が得られました。

図4 R3C BiFeO3の構造。

Lattice Constants	
This work	Reference [13]
a = 5.50 Å	a = 5.35 Å
b = 5.50 Å	b = 5.35 Å
c = 5.50 Å	c = 5.35 Å
$\alpha = 59.99^{\circ}$	$\alpha = 61.93^{\circ}$
$\beta = 59.99^{\circ}$	$\beta = 61.93^{\circ}$
$\gamma = 59.99^{\circ}$	$\gamma = 61.93^{\circ}$

表 1 BiFe03の格子定数

電気的特性

BiFe03 の電子構造は、強誘電体 R3C 構造で計算しました。図5に示したよ うに、LDA 内で計算単一軌道の状態の単一 粒子の密度(DOS)です。 R3C 構造の BiFe03 については、両方のスピンチャネ ルは、同一の合計 DOSS を表します。構造 は、LDA の計算からバンドギャップ殆ど見 えない、導体の結果でした。しかしなが ら、図 5 (b) に示すように、以前の研究 では、0.4eV の微小間隙を持った絶縁特性 です[13]。これらの結果の間の矛盾は、 構造最適化が要因と考えられます。また、 さらなる調査が必要とされていた。

図 5 (a) R3C BiFe03 の状態の計算密度 (DOSS)。 LDA 内で計算 1 つの軌道の合計 DOS。 (b) を参照計算した結果[13]。

この研究から、第一原理計算によ る構造から電気的特性(すなわち偏光) が欠陥や不純物はこのような特性をどの ように影響するかを予想する可能性が見 えます。

E.まとめ

私は主に日本での実験に焦点を当 てていたので、研究の面では、ここでの 理論計算は私が私の視界を拡大するのに 適しています。でも、私は多くの結果を 得ませんでしたが、私は、材料の基本的 な量子論と現代のシミュレーション手法 の研究が私の将来の仕事のために有用で す。

謝辞

本プログラムへの参加にあたり、 多くの方々にご協力頂きました。ここに 謝辞申し上げます。まず始めにすばらし い環境と機会を与えて頂き、多くのご指 導を頂きましたカリフォルニア大学ロ サ ンゼルス校の Jane P. Chang 教授に深く 感謝申し上げます。 Chang 教授の助言な しには本研究に対する理解を深めること はできなかったでしょう。また、本プロ グラムの遂行にあたり、多くの協力を Calvin Pham 氏にから頂きました。私は生 活面でも多大な援助を頂き彼の助けなし には快適な研究留学生活を送ることは困 難でした。感謝致します。また、多くの 助言と精神的な支えを頂きました、Jane P. Chang 教授の研究室のメンバーの 方々、Dr. Taeseung Kim、Dr. Ya-Chuan (Sandy) Perng、Vladan Jankovic、Nathan Marchack、Jea (Jay) Cho、Diana Chien、 Jack Chen、Cyrus Cheung、Colin Rementer と Michael Morgan Paine に感謝致します。 本プログラム参加中に得た全ての経験は 将来、私の成長に役立つと信じています。 本プログラムを組織して頂きまし

た名古屋大学の豊田教授にも深く感謝致 します。また、プログラム参加に伴う事 務手続きの大半をプラズマナノ工学セン ターの江良さんにご協力頂きました。こ こに感謝致します。本プログラム参加に あたり、名古屋大学の堀教授、関根教授、 石川教授、近藤 准教授、竹田助教には多 大なご支援を頂きました。先生がたのご 支援なしには本プログラムへの加自体が 不可能であったと言わざるをえません。 ここで深く感謝致します。

このプログラムは、日本学術振興 会が主催するインターナショナル・トレー ニング・プログラムによってサポートされ ていました。

引用文献

- [1]Wikipedia(http://en.wikipedia.org/wiki/Uni versity_of_California,_Los_Angeles).
- [2] Homepage of Electronic Materials Synthesis and Plasma Processing Lab
- (http://www.seas.ucla.edu/Chang/index.html).
- [3] M. Fiebig: J. Phys. D: Appl. Phys. 38 (2005) R123.
- [4] H. Schmid, Ferroelectrics (1994) 161, 1.
- [5] H. Schmid, *Magnetoelectric Interaction Phenomena in Crystals* (2004 Dordrecht: Kluwer) 1.
- [6] O. Sneh, R. Clark-Phelps, A. Londergan, J. Winkler, and T. Seidel, Thin Solid Films 402 (2002) 248–261.
- [7]Wikipedia(<u>http://en.wikipedia.org/wiki/Ato</u> <u>mic layer deposition</u>)
- [8] B. B. van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, (2004) 164.
- [9] R. Seshadri and N. A. Hill, Chem. Mater. 13 (2001) 2892.
- [10] R. Resta, Modell. Simul. Mater. Sci. Eng. 11 (2003) 117.

- [11] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. **220** (2005) 567.
- [12] F. Knbel and H. Schmid, Acta. Cryst. B46 (1990) 698.
- [13] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71 (2005) 014113.