International Training Program 韓国 成均館大学 派遣報告

名古屋大学大学院工学研究科電子情報システム専攻 竹田 圭吾

今回、International Training Program (ITP) 長期派 遣プログラムに参加し、成均館大学の Center for Advance Plasma Surface Technology (CAPST)におい て、研究活動を実施した。ここにその報告を行う。

プラズマプロセス技術は、微細加工、薄膜合成、 表面処理など様々な分野で利用され、その応用範 囲は極めて広い。本技術においては、プラズマ内 部で生成される反応性の高い活性種が大きな役割 を果たしており、その反応過程の解明が更なる技 術向上をもたらすため、重要とされている。しか し、これら活性種の評価・分析には、非常に高い 専門性と技術を要するため一般的には難しく、プ ラズマ内部の反応はブラックボックスの状態のま ま、プロセス結果のみの評価で開発が進められて いるのが現状である。これまでに名古屋大学では、 プラズマ内部の反応で特に重要である原子状ラジ カルの絶対密度を計測する手法および装置の開発 に成功している。[1-4]

原子状ラジカルの絶対密度計測には、波長 200 nm 以下の真空紫外領域と呼ばれる波長帯の光を 使用した吸収分光法が用いられる。この波長領域 の光は大気中のガスにより吸収されるため、光を 伝搬する光路は真空状態にする、もしくは光吸収 を起こさないガスで置換する必要がある。また、 計測対象である原子状ラジカルの吸収スペクトル は非常に狭く、使用するプローブ光には特殊な光 源を必要とする。そのため、これまで原子状ラジ カルの絶対密度計測には、専用の真空設備と大型 なレーザーシステムが必要であり、様々なプラズ マ装置で原子状ラジカルを計測することは困難で あった。我々のグループでは、特に光源の小型化 と簡便性の向上を目的とし、大気圧マイクロホロ ーカソード放電を用いた光源の開発に成功してい る。数百µmのホロー電極内に、He ガスに微量の H₂、N₂、O₂等のガスを添加した混合ガスを用いて

大気圧プラズマを生成し、そのプラズマ内部で発 生する原子の輝線をプローブ光とする本光源は、 従来のレーザーシステムでは、数メーターのサイ ズであるのに対し、光源だけで言えば手のひら上 にのる程度のサイズであり、また高度な調整を必 要としないため、比較的簡便に様々な装置に応用 可能である。今回、本光源を含め、真空紫外分光 器など真空紫外吸収分光システムを成均館大学 CAPST にあるプラズマプロセス装置に取り付け、 原子状ラジカルの絶対密度計測を実施した。

Figure 1 に成均館大学 CAPST のプラズマ装置の 概略を示す。本装置は、シャワーヘッド構造を有 する上部アンテナと、サンプルステージからなり、 上部アンテナに RF(13.56 MHz)電力を印加する ことで容量結合型プラズマを生成する平行平板型 プラズマプロセス装置である。

Fig.1(b) 実験設備の写真

Figure 1 に示すようにプロセスチャンバーにマ イクロホローカソード光源(MHCL)と真空紫外 分光器を対向するように取り付けた。このセット アップにおいては、セラミックパイプ(内径:7 mm)をチャンバー内に挿入し、プローブ光がプ ラズマ内部を透過する長さ(吸収長)を下部電極 の直径と同じ0.115 mとなるように設定し、下部 ステージ直上の原子状ラジカル密度を計測する構 成となっている。

今回使用する MHCL はインコヒーレントな光 源であり、得られる発光スペクトルは周波数に対 して拡がりを持っている。したがって、測定され る吸収率 a は入射光強度を I_{in}、透過光強度を I_{out}, 吸収長を *L* とすると次式で与えられる。

$$a = 1 - \frac{I_{out}}{I_{in}} = 1 - \frac{\int f_1(v) \exp[-k_0 f_2(v) L] dv}{\int f_1(v) dv}$$
(1)

ここで、*f*₁(*v*)は、光源の発光ラインプロファイル、 *f*₂(*v*)は吸収体の吸収ラインプロファイル、*k*₀は中心 周波数における吸収係数である。測定された吸収率 aから原子密度Nを求めるためには、各*f*₁(*v*)、*f*₂(*v*)を 同定する必要がある。これまでに実験的に*f*₁(*v*)は、 ドップラー広がりと衝突広がりの二つを考慮した フォークトプロファイルであることが分かってい る。また、今回の計測対象は、低圧のプラズマ内部 の原子状ラジカルであるため、*f*₂(*v*)はドップラープ ロファイルであると考えられる。計測対象プラズマ 内部の原子状ラジカルによるプローブ光の吸収率 を実測することにより、式(1)から吸収係数koが求め られ、下記の式(2)より原子状ラジカルの密度Nを求 めることができる。

$$N = \frac{8\pi v_0}{c^2} \frac{g_1}{g_2} \frac{1}{A} \int k_0 f(v) dv$$
 (2)

ここで、*v₀*は遷移線の中心周波数、*c*は光速、*g*₁、*g*₂ は遷移線の上下順位の統計銃率、*A*はアインシュタ イン*A*係数である。

MHCLに使用する放電ガスには、N、H、O原子の 発光スペクトルを得るため、Heに10⁵程度と非常に 微量の割合でN2、H2、O2が添加された混合ガスを使 用する。この添加ガスの導入量が一定以上になる、 もしくはガス供給ラインの不純物の影響が大きく なると、MHCL内で生成されるN、H、O原子の密度 が過剰になり、光源内で生成したプローブ光が同じ 光源内に存在する原子により吸収される自己吸収 という問題が生じる。この問題が生じると、原子発 光スペクトルの中心波長領域が比較的強く吸収さ れるため、光源から出射される発光スペクトルの形 状がひずみ、その同定が困難になる。正確なスペク トル形状が把握できないと、プローブ光の吸収率か ら計測対象プラズマ内部の原子状ラジカルの絶対 密度を正しく計測することはできない。今回の実験 では、MHCLに使用するガス供給系および排気系と して、CAPSTの設備を使用したため、計測を開始す る前に、まずは光源に導入するN2、H2、O2の流量比 率の最適化を行った。この実験においては、計測対 象となるプラズマを一定条件で生成した上で、 MHCL内に導入する放電ガスの混合比率を変化さ せ、計測対象プラズマ内部で生じる光吸収率の変化 を評価する。光吸収率が変化した場合、自己吸収の 影響があることを意味し、吸収率が変化しない混合 比率の条件でMHCLを使用することが望まれる。

MHCL に導入する混合ガスの He に対する H₂ の比率を横軸とし、H₂ガスを用いた RF プラズマ で生じる吸収率を縦軸とした結果を Fig.2 に示す。 使用した吸収線は、121.56 nm のライマン α ライン である。また、計測対象となる RF 励起 H₂プラズ マの生成条件は、チャンバー内圧力 0.97 Torr、RF パワー180 W で一定とした。Figure 2 から分かる ように、 1.0×10^{-3} %の H₂ ガスの混合比率までは、 プローブ光の吸収率は、49%程度でほぼ一定であ るが、 1.0×10^{-3} %以上の混合比率では、その増加 に伴い、吸収率が急激に減少する傾向が得られた。 この結果から、 1.0×10^{-3} %以上の混合比率では、 光源内で生成される H 原子が過剰となり、自己吸 収の影響により、プローブ光のスペクトル形状が ひずみでしまったためであると考えられる。した がって、実際のプラズマ計測には、自己吸収の影 響の無い 1.0×10^{-3} %以下の混合ガス比率で MHCL を使用するとことした。

Fig.2 MHCL に導入する混合ガス比率に対する水素プラズマ内部でのプローブ光吸収率

Figure 3 に、Fig.1 に示す RF 励起 H₂容量結合型 プラズマ装置での水素原子絶対密度の計測結果を 示す。計測対象である H₂プラズマの生成条件は、 チャンバー内の圧力を 0.97 Torr とし、RF パワー を 60~300W の範囲で変化させた。Figure 3 から 分かるように水素原子密度は、RF パワーの増加と ともに、 9.2×10^{11} から 2.6×10^{12} cm⁻³ まで単調に増 加する結果となった。今回、時間の関係上、電子 密度や電子温度の計測まで実施することは出来な かったが、RF パワーを増加させると一般的に電子 温度はほとんど変化しないが、電子密度は単調に 増加することが知られており、その電子密度の増 加に伴って、H原子の生成量が増加したためであ ると考えられる。この結果から、今回 CAPST に 持ち込んだ MHCL を用いた真空紫外吸収分光シ ステムにより、CAPST の装置の計測が十分に可能 であることを確認した。

Fig.3 RF励起H₂容量結合型プラズマ内部のH原子 絶対密度の RF パワー依存性

次に、更なるラジカル密度増加を目的に、Fig.1 に示す装置内の上部アンテナ-下部ステージ間に、 新たな電極を挿入し、その電極に UHF パワーを 印加することの効果を確認した。計測対象である RF+UHF 励起 H₂プラズマの生成条件は、チャン バー内の圧力を 0.97 Torr、RF パワー180 W とし、 UHF パワーを 0~70 W の範囲で変化させた。 Figure 4 に示すように、UHF パワーを印加するこ とで、RF パワーのみでは、 1.8×10^{12} cm⁻³ 程度あ った H 原子密度は、さらに上昇し、UHF 印加パワ -70 W の条件で、 7.2×10^{12} cm⁻³ 程度まで上昇さ せることが可能であることが分かった。

今回、成均館大学 CAPST との共同研究として、 名古屋大学で開発した真空紫外吸収分光システム を持ち込み、CAPST にあるプラズマ装置の計測を 実施した。今回の計測では、装置立ち上げの関係 もあり、比較的計測し易い純水素プラズマを計測 対象とした。しかし、シリコン太陽電池薄膜の合成に使用される SiH₄ ガスを用いたプラズマ CVD プロセス内でのH原子の計測も可能であることを 今回の派遣中に確認できている。今後は、SiH₄/H₂ プラズマ内部でのH原子の絶対密度計測を共同で 実施していく予定である。

Fig.4 RF+UHF 励起 H₂プラズマ内部の H 原子密 度の UHF パワー依存性

最後に、今回の成均館大学 CAPST での2ヶ月 間の滞在期間中、実際に行った実験に関する内容 以外にも、プラズマ気相診断や表面反応など様々 なことを滞在先の研究室のメンバーと議論するこ とができ、自分にとって非常に良い経験となると ともに、非常に有意義に滞在であったと考えてい る。滞在先の Jeon G. Han 教授、および研究室の 皆様には誠に感謝するとともに、このような機会 をくださった、堀勝教授、豊田浩孝教授、関根誠 教授、諸先生方、名古屋大学工学研究科附属プラ ズマナノ工学研究センターITP 事務局に心より感 謝申し上げます。 [1] S. Takashima, M. Hori, T. Goto, A. Kono, M. Ito, and K. Yoneda, Appl. Phys. Lett. **75**, 3929 (1999).

[2] S. Tada, S. Takashima, M. Ito, M. Hori, and T. Goto, J. Appl. Phys. 88, 1756 (2000).

[3] S. Takashima, S. Arai, A. Kono, M. Ito, K. Yoneda, M. Hori, and T. Goto, J. Vac. Sci. Technol. A **19**, 599 (2001).

[4] H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, Rev. Sci. Instrum. **74**, 3453 (2003).